
A Crawljax Based Approach to Exploit 
Traditional Accessibility Evaluation Tools for 
AJAX Applications 

F. Ferrucci1, F. Sarro1, D. Ronca1, S. Abrahao2 

Abstract   In this paper, we present a Crawljax based approach to automatically 
evaluate the accessibility of AJAX applications. Crawljax is a tool able to crawl an 
AJAX application for inferring a corresponding state-flow graph. Thus, combining 
Crawljax with a traditional tool for accessibility testing we realized a plugin that 
provides an automatic generation of accessibility evaluation report for AJAX ap-
plications. The proposed approach has been experimented carrying out a case 
study that analyzed the accessibility of Google Search and AskAlexia, as represen-
tative of Web applications that use AJAX technology. The case study highlighted 
the effectiveness of the approach based on the use of a state-based representation 
to automate the accessibility evaluation of AJAX applications. Nevertheless, it al-
so revealed some shortcomings of the current implementation of Crawljax that 
should be addressed to make its exploitation in this context more reliable. 

1. Introduction 

Recently the Web is changing significantly; we are assisting the transition from 
static pages to dynamic content and rich interaction. Many recent Web applica-
tions are based on AJAX technology. AJAX allows achieving a high level of user 
interactivity through a combination of different technologies, such as XHTML, 
CSS, JavaScript and XML, and asynchronous communication between client and 
server. Shifting from the asynchronous request–response protocol to one based on 
asynchronous communications, allow us to request and serve content without hav-
ing to refresh the entire page, making user interface more responsive and reducing 
the delay in user experience. However, in spite of these benefits AJAX technology 
brings a set of new challenges as well [11]. Indeed, the replacement of the syn-
chronous request-response protocol with asynchronous communications makes 
AJAX applications very different from traditional Web applications. These latter 

                                                           
1 University of Salerno, Dipartimento di Matematica e Informatica, Via Ponte 

don Melillo, 84084 Fisciano (SA), Italy, {fferrucci, fsarro}@unisa.it 
2 Universidad Politécnica de Valencia Camino de Vera, s/n, 46022 Spain, 

sabrahao@dsic.upv.es 



2  

are based on the multi-page interface paradigm where each page has a unique 
URL, while AJAX applications can consist of a single-page with a single URL 
that dynamically changes state. This aspect makes the evaluation of AJAX appli-
cations accessibility not a trivial task since the intrinsic highly dynamic nature of 
these applications makes very difficult and time consuming to manually examine 
whether all the states of an AJAX application meet certain accessibility require-
ments. As a matter of fact, existing tools employed to evaluate accessibility of tra-
ditional Web applications are not appropriate for AJAX applications because they 
are able to evaluate only static HTML pages and ignore all the dynamic elements 
that are the main components of an AJAX application. A way to address this chal-
lenge is the use of a crawler able to explore all the dynamic states of an AJAX ap-
plication and build a traditional web navigational model which can be used to test 
the generated static pages of the AJAX applications. Crawljax [10] is one of the 
most promising tools concerning automatic crawling of AJAX applications. In-
deed it was successfully employed in previous study to explore automatic testing 
of AJAX applications [3][8][9][11][12]. 

To the best of our knowledge there are no works in the literature exploring 
automatic evaluation of accessibility in AJAX applications. In this paper, we pre-
sent a Crawljax based approach to automatically evaluate the accessibility of 
AJAX applications. In particular, we realized a Crawljax plugin that provides an 
automatic generation of accessibility evaluation reports for AJAX applications ex-
ploiting the finite state machine inferred by Crawljax and a traditional accessibil-
ity evaluation tool. The proposed approach has been experimented carrying out a 
case study that evaluated the accessibility of Google Search [6] and AskAlexia 
[2], as representative of Web applications that use AJAX technology. The case 
study revealed the effectiveness of the approach based on the use of the Crawljax 
state-based representation to address the accessibility issue for AJAX applications. 
Nevertheless, it also reveals some shortcomings of the current implementation of 
Crawljax that should be addressed to make its exploitation in this context more re-
liable. 

The paper is organized as follows. Section 2 discusses the challenges for acces-
sibility evaluation of AJAX applications. Section 3 recalls the main features of 
Crawljax. Section 4 presents the Crawljax plugin we developed for evaluating the 
accessibility of AJAX applications. Section 5 reports on a case study where the 
plugin is validated in terms of its effectiveness and performance. Finally, section 6 
presents conclusions and future work. 

2. Evaluating Accessibility of Ajax Applications 

Accessibility is a crucial aspect of Web applications. The World Wide Web Con-
sortium (W3C) proposed standard guidelines [15][16] to support developer in 
making accessible Web sites and a working draft was proposed to suggest techni-



3 

cal accessibility specification of Rich Internet Applications [1]. Also a confor-
mance evaluation method of Web site accessibility is suggested by W3C to deter-
mine if a Web site meets accessibility standards, such as the Web Content Acces-
sibility Guidelines (WCAG) [15][16]. Such conformance evaluation method 
combines some manual checking along with the use of several semi-automatic or 
automatic accessibility evaluation tools. Indeed, simple manual techniques such as 
changing settings in a browser can determine if a Web page meets some accessi-
bility guidelines. A comprehensive evaluation to determine if a site meets all ac-
cessibility guidelines is much more complex and there are several evaluation tools 
[5] that help with this evaluation. However, there not exists a single tool which de-
termines if a site meets all accessibility guidelines. Indeed, each tool is capable to 
identify specific accessibility issues depending on the guidelines taken into ac-
count, the types of automatic checking provided, and the web page formats sup-
ported.  Thus, evaluating web sites for accessibility can be a non trivial task espe-
cially in case of large web site or sites that uses rich technology and contents. As a 
matter of fact, the highly dynamic nature of AJAX applications makes ineffective 
the use of traditional accessibility evaluation tools. Indeed, these tools are able to 
evaluate only static HTML pages and ignore all the dynamic elements that are the 
main components of an AJAX application. Thus, presently all the accessibility 
evaluation tasks for AJAX applications need to be carried out manually resulting 
very time consuming. 

In this work we describe an approach to provide a support to a tester for carry-
ing out the accessibility evaluation task. In particular, we exploited the Crawljax 
based approach to overcome the dynamic nature of AJAX applications in order to 
make more effective the use of traditional accessibility evaluation tools. In the 
next section, we will recall the main aspects of Crawljax and the state-based test-
ing approach that this tool supports, since it will be exploited in our approach that 
is illustrated in section 4. 

3. Using Model-Based Testing for AJAX Applications: the 
Crawljax Approach 

There are many examples of important applications that use AJAX technology 
such as Google Suggest, Google Groups, GMail, Google Maps, and Amazon. 
These commercial web sites demonstrate that AJAX is practical for real-world ap-
plications and more and more complex and sophisticated applications make use of 
AJAX. For all these reasons it is very important to find an efficient technique for 
testing those applications. Existing Web testing techniques are not appropriate for 
AJAX applications because there are different features of AJAX that make the test 
extremely difficult to realize. One of these characteristics depends on the fact that 
AJAX makes an intensive use of client-side scripting code to realize the rich 
event-based GUI. Another aspect is related to the use of a single-page approach, 



4  

where the navigation among pages used in the traditional applications is replaced 
by dynamic changes of the page structure. AJAX approach changes also the navi-
gation structure building, since every element of the page can contribute being 
clickable at runtime. Another aspect is related to the asynchronous communication 
between client and server components based on raw data such as string or text in-
stead of whole HTML page. Therefore understanding the evolution of AJAX page 
is very difficult observing the communication between client and server. 

Model-based testing is turned out to be quite useful for test Ajax Web applica-
tions. Indeed, it exploits reverse engineering and Web crawling techniques to 
build a model of the target application and then extract test cases by traversing the 
model. A Web crawler (or Web spider or robot) is a program that automatically 
traverses the Web’s hyperlink structure and retrieves the content of the Web pag-
es. It builds a graph (usually called navigation model) where each node represents 
a Web page and each edge represents a link. This approach is not completely ap-
plicable to test AJAX applications because resulting navigation model may be 
wrong with high probability, due to the single-page nature of AJAX applications. 
In order to apply this approach to AJAX, in [9] it is proposed a state-based testing 
approach based on traces of the application to construct a finite state machine. The 
constructed finite state machine differs from the navigation model since each node 
represents a different state of an AJAX page and each edge between vertices rep-
resents a clickable element that allows reaching the target vertex from the start 
vertex. Building finite state machines is not a simple task; there are different chal-
lenges. First of all, it is difficult to identify the elements that form the navigation 
structure because, as said before, each element of the page can became clickable at 
runtime. Another important challenge is related to understanding when a change 
of state in the page occurs, and when two states are identical. AJAX technology 
does not allow a correct use of the “back” and “forward” features of the browser 
due to the fact that the dynamic changes of DOM are not registered in the browser 
history, thus making more difficult the navigation within the state machine. In [10] 
a tool, named Crawljax, is proposed to navigate an AJAX application and incre-
mentally infers a finite state machine. Initially, the state machine only contains the 
root state and new states are created and added as the application is crawled and 
state changes are analyzed. In order to obtain all the clickable elements in a page, 
Crawljax exploits an algorithm that uses a set of candidate elements which are all 
exposed to an event type. The creation of the states is doing when the comparison 
between the actual DOM and the DOM obtained after firing an event on a clicka-
ble candidate elements, returns a significant difference. When a new state is creat-
ed, a new edge on the graph is also created between the state before the event and 
the current state. For each DOM state a hash code is also computed and used to 
compare every new state to the list of already visited states in order to recognize 
an already met state. Once a clickable element has been identified and its corre-
sponding state was created, the crawl procedure is recursively called to find new 
possible states. Terminated the state machine generation, Crawljax also uses it to 
generate indexed pages that represent static instance of a dynamic page. To do 



5 

this, Crawljax follows the outgoing edges of each state in the state machine and 
transforms in hypertext link each clickable element, updating also the HREF at-
tribute to link to the generated static page. After the linking process, each state of 
the state machine is transformed into the corresponding HTML string representa-
tion and saved on the file system. Each generated static file represents the content 
of the AJAX application as seen in the browser in a specific state at the time of 
crawling. Crawljax gives the tester the opportunity to specify the depth level of the 
state machine and the maximum number of states. Moreover it is possible to man-
ually specify the elements that should be clicked and the input value for the form 
field.  

Once the state machine and its static representation are available, it is possible 
to make several types of tests. In particular, in [12] it was proposed a way to do 
regression testing for AJAX applications, while in [11] it was proposed a method 
for automatic testing AJAX applications through invariants specifications and 
several kinds of invariants can be used for this scope. As an example, invariants 
can be defined to automatically detect HTTP error messages (e.g., “404 Not 
Found”, “400 Bad Request”). In [3] it was proposed an approach to automatically 
detect security problems in Web widgets interactions, such as malicious widget 
which changes the content other widgets.  

4. A Crawljax Plugin for Generating Accessibility Evaluation 
Reports 

As suggest by W3C guidelines a preliminary review of Web site accessibility 
combines some manual checking along with the use of several semi-automatic ac-
cessibility evaluation tools. Presently the use of these tools is not effective for 
AJAX applications or it requires a lot of manual work due to the high number of 
states that a single page can have. To address this problem, the plugin we realized 
exploits Crawljax to automatically infer a state-graph of AJAX applications, thus 
for each identified state it sends an HTTP request to a validation tool to evaluate 
the corresponding static page. The response (i.e., the accessibility report) is parsed 
and the information is recorded in HTML report file. The final report (see Fig. 1) 
resumes the number of errors and warnings (for each priority level) found in each 
state with reference to WCAG 1.0 [15]. In this way, all the steps required to 
evaluate a single Web page are automated and all the states of an AJAX applica-
tion identified by Crawljax can be automatically evaluated.  



6  

 

Fig. 1. Example of Generated Accessibility Report Resume 

 
Fig. 2. Example of generated Accessibility Report (detailed view) 

Several validation tools [5] can be employed to make a semi-automatic evalua-
tion of Web sites accessibility. Generally, these tools follow different accessibility 
guidelines (such as WCAG 1.0 [15] and Section 508 [13]) and generate a report 
that highlights accessibility issues found in a Web page. In the current implemen-
tation of the plugin we exploited EvalAcces [4] as accessibility evaluation tool. 
This tool is based on WCAG 1.0 [15] guidelines and allows the tester to evaluate 
either single Web pages or an entire Web site. Exploiting this feature our plug-in 
is able to provide a detailed description (see Fig. 2) of the errors and warnings 
found in each state, including number of violated guideline and related check-
point, short checkpoint description, names of the attributes that are missed or 
causes the error/warning, lines of code where the error/warning was detected, pri-
ority level of error/warning. We selected EvalAccess for the above mentioned fea-
tures and for the fact that it turned out quite stable. It is obvious that the proposed 
approach can be easily extended by taking into account other accessibility evalua-
tion tools, thus benefiting of the fact that different tools are able to capture differ-
ent accessibility problems. 



7 

4. Case Study Planning 

4.1 Planning 

We experimented the proposed plugin on two AJAX-based Web applications, 
namely Google Search [6] and AskAlexia [2]. The former refers to the home page 
of the most popular Web search engine; through this page it is possible to search 
information in the Web and to reach several Google applications such as Gmail, 
Google Maps and Google Calendar. AskAlexia is a beta search engine entirely re-
alized in AJAX that allows searching various contents including Web pages, im-
ages, videos, music, news, and blogs. We selected these applications because they 
can be considered a representative set of the real Web applications that use the 
AJAX technology. The goals of our case study were: 
 R1 (Effectiveness): to assess the effectiveness of the plugin in evaluating 

the accessibility issues of AJAX Web applications. 
 R2 (Performance): to analyse plugin performance in terms of input size 

versus time.  
To address R1, we verified whether the plugin checked the accessibility for all 

the states of the application which satisfy the characteristics specified during the 
set-up (e.g., tag name, depth, … ). Moreover, we verified whether or not the ap-
proach makes more effective the use of traditional accessibility validation tools. In 
particular, we assessed if the proposed combination of Crawljax and EvalAccess 
was able to provide more accurate evaluations with respect to the traditional use of 
EvalAccess. Thus, we compared the reports with the ones obtained by employing 
the “evaluate Web site” functionality of EvalAccess.  

As for R2, we analyzed the performance of our approach in terms of time ver-
sus input size for each crawled state, where the input size is represented by the 
HTML code size. We also measured the time required by a tester to manually ac-
complish the tasks that the plugin automates. In particular, we estimated the time 
needed to manually use EvalAccess. This required to manually search each click-
able page element, click on it and save the relative Web page, then copy the html 
code and paste it in the EvalAccess Web page. 

The experiments were carried out using a laptop with Intel Pentium M proces-
sor 1.73GHz, with 2 GB RAM and Windows XP with Service Pack 3. Concerning 
the plugin configuration we employed (i) the default input specification for the 
Crawljax configuration process, (ii) the “clickDefaultElements” method provided 
by Crawljax for specifying the clickable elements, (iii) a depth level equals to 1 in 
order to avoid the access to other Google applications or external Web sites start-
ing from Google and AskAlexia home pages.  



8  

4.2 Results 

4.1.1 R1 – Effectiveness 

The plugin execution generated a graph with 11 states on Google application and a 
graph with 6 states on AskAlexia. In both cases Crawljax did not produce two dif-
ferent crawled states for the same page state. However, the manual search for 
clickable page elements revealed that on the experimental object there were 21 
clickable elements (i.e., states). Thus in this case Crawljax missed 10 states and 
the plugin could not produce the relative accessibility reports. Table 1 reports the 
overall number of accessibility errors and warning found for each guideline of 
WCAG [15] for Google and AskAlexia. 

Table 1.  Numbers of Error (E) and Warnings (W) reported by the plugin for Google and 
AskAlexia Accessibility Evaluation using WCAG 1.0 guidelines (GL). 

  GL 1 GL 2 GL 3 GL 4 GL 5 GL 6 GL 7 GL 8 GL 9 GL 10 GL 11 GL 12 GL 13 GL 14 

 State  E W E W E W E W E W E W E W E W E W E W E W E W E W E W 

Google Index - 12 - 23 2 11 1 2 2 8 13 13 - 24 - 11 - - 4 64 8 3 7 1 - 61 - 3 

 State2 - 22 - 79 26 50 1 2 13 52 58 9 - 30 - 7 - - - 295 20 3 50 1 - 61 - 3 

 State3 - 5 - 21 34 57 1 2 25 100  5 - 9 -- 3 - - - 393 48 3 13 1 - 19 - 3 

 State4 179 185 - 251 18 402 1 2 12 48 120 7 - 191 - 5 - - 1 739 207 3 61 1 - 777 - 3 

 State5 2 7 - 8 23 15 1 2 13 52  6 - 12 - 4 - - - 27  3  1 - 27 - 3 

 State6 14 58 - 59 34 59 1 2 18 72 27 6 - 63 - 4 - - - 54  3  1 - 71 - 3 

 State7 6 6 - 12  22 1 2 - - 19 6 - 11 - 4 - - - 36  3 5 1 - 51 - 3 

 State8 - 12 - 22 2 11 1 2 2 8 16 13 - 24 - 11 - - 4 66 8 3 9 1 - 69 - 3 

 State9 - 15 - 15  26 1 2 - - - 12 - 25 - 10 - 1 - 72  3  1 - 133 - 3 

 State10 - 9 - 22 1 25 1 2 5 20 37 9 - 17 - 7 - - 3 128 1 3 9 1 - 187 - 3 

 State11 1 26 - 31  96 1 2 7 24 - 15 - 40 - 13 - - - 433  3 1 1 - 819 - 3 

AskAlexia Index - 20 - 26 2 16 1 2 1 4 1 9 - 28 - 7 - - 24 63 1 3 1 1 - 85 - 3 

 State2 - 20 - 26 2 16 1 2 1 4 1 9 - 28 - 7 - - 24 113 1 3 1 1 - 89 - 3 

 State3 - 8 - 14 2 4 1 2 1 4 1 9 - 16 - 7 - - - 41 1 3 1 1 - 41 - 3 

 State4 - 8 - 14 2 4 1 2 1 4 1 9 - 16 - 7 - - - 113 1 3 1 1 - 45 - 3 

 State5 1 9 - 15 2 5 1 2 1 4 1 9 - 17 - 7 - - - 60 1 3 1 1 - 49 - 3 

 State6 1 9 - 15 2 5 1 2 1 4 1 9 - 17 - 7 - - - 60 1 3 1 1 - 49 - 3 

 
The comparison between the report obtained with our plugin with those obtained 
employing only EvalAcces with the “evaluate Web site” functionality revealed 



9 

that the number of errors and warnings highlighted by the plugin is higher than 
those revealed by EvalAccess alone (see Table 2). This is due to the fact that in 
this case only a single state is found and then analyzed by EvalAccess for both the 
Web applications, against the 12 and 6 states analyzed by our plugin for Google 
and AskAlexia, respectively. Thus, we can argue that the combination of a tradi-
tional evaluation tool and Crawljax let to discover more problems than those 
found by applying only the traditional validation tool. 

Table 2. Accessibility report resume obtained employing EvalAcces and the proposed plugin 
for Google and AskAlexia Web Applications 

 Priority 1 Priority 2 Priority 3 
  Eval 

Access 
Plugin Eval 

Access
Plugin Eval 

Access
Plugin 

Google Errors 0 0 23 30 4 7 
 Warnings 50 77 64 84 60 75 
AskAlexia Errors 0 0 5 29 2 2 

 Warnings 35 86 38 83 41 98 

4.1.2 R2 – Performance 

In Table 3 we reported the performance of the plugin in terms of HTML code size 
versus time to process it. We can note that the processing time required by the 
plugin to generate accessibility reports for each state of both Google and 
AskAlexia Web sites is proportional to the size of the HTML code of the state. 
However, the average time3 required by the plugin for processing 1 kb is 0.1 se-
conds in case of Google, while is slightly higher for AskAlexia (i.e., 0.2 seconds 
for 1 kb). Since this time is the approximate time required to send the http request 
to EvalAccess server, to analyze the input code and to receive the http response, 
this result may depend on the fact that the HTML code size of both Web sites is 
very similar. We also measured the time spent to manually evaluate the crawled 
states for both Web sites. This task requires that a tester has to manually discover 
states and for each of them save the relative Web page, copy the html code, and 
paste it in the EvalAccess Webpage. This operation requires about a minute for 
each state. Thus, for the experimented objects the overall time spent by a tester is 
about 11 and 6 minutes for Google and AskAlexia application, respectively. It is 
worth to note that these values are higher than the ones needed to accomplish the 
task with the plugin (i.e., 37.6 seconds for Google and 10.5 for AskAlexia). As we 
can image the more the states the more burdensome is to manually do the task. 

                                                           
3 This value is obtained dividing the sum of all processing time with the sum of 

all HTML code size.  
 



10  

Table 3. Performance time of the plugin for Google and AskAlexia Web Applications 

 State  
Name 

Input Size 
 (in kb) 

Processing Time  
(in seconds) 

Processing Time for 1 kb 
 (in seconds) 

Google Index 13 1.8 0.1 
 State2 27 2.5 0.1 
 State3 40 2.6 0.1 
 State4 90 9.3 0.1 
 State5 17 1.7 0.1 
 State6 8 2.3 0.3 
 State7 9 1.4 0.2 
 State8 12 1.8 0.2 
 State9 8 1.7 0.2 
 State10 31 2.9 0.1 
 State11 104 9.6 0.1 

AskAlexia Index 10 1.8 0.2 
 State2 9.8 1.8 0.2 
 State3 8.4 1.6 0.2 
 State4 12.4 1.7 0.1 
 State5 12.4 1.8 0.1 
 State6 12.4 1.8 0.1 

5. Conclusions and Future Work 

In this paper, we described a Crawljax based approach to automatically evaluate 
accessibility of AJAX applications. The proposed approach has been evaluated 
through a case study that, though preliminary, it is enough to suggest us the viabil-
ity of the approach to automate the accessibility evaluation of AJAX applications. 
Indeed, the approach is able to increase the effectiveness of the use of traditional 
accessibility evaluation tools. However, there are several points to be improved. 
Indeed, the plugin inherits not only the advantages of Crawljax but also its short-
comings. The main problem is concerned with the fact that Crawljax did not detect 
all the reachable states, thus affecting the completeness of the accessibility evalua-
tion plugin. Reinforcing these aspects of Crawljax will determine a great im-
provement for the obtained results making the plugin more accurate and useful. 
Moreover, the use of different evaluation tools can be a possible future work. In-
deed, different accessibility evaluation tools could identify different accessibility 
issues, such as the ones developed for validating the WCAG 2.0 [16]. Further-
more, several future researches can be prospected in the line suggested by the pa-
per. In particular, using the Crawljax approach tools can be realized to automate 
other accessibility evaluations tasks. As an example, an important accessibility is-
sue that is still manually checked is the keyboard accessibility. This holds if every 
action triggered with a mouse is also available through the keyboard. Keyboard 
accessibility is fundamental for people who do not use pointing devices and for 
the use of many assistive technologies including screen readers and on-screen 



11 

keyboards. The proposed Crawljax state-based approach could be used to auto-
mate the verification that all the page elements of an AJAX application can be ac-
cessed by keyboard. The proposed approach could be also useful to compare the 
content between a standard version of the AJAX Web application and its accessi-
ble version. Indeed, an accessible version of a Web application is generally real-
ized to improve the accessibility level of the application when the technologies 
used in the standard version does not allow reaching a high accessibility level. So, 
a current problem is that the two versions require a maintenance work to align the 
content when one version changes. Manually validating content consistence of 
both versions may be a very tedious work. A possible solution could consist in the 
development of a plugin that automatically compare the content exploiting the 
graphs generated by crawling both versions.  

References 

[1] Accessible Rich Internet Applications 1.0, http://www.w3.org/TR/wai-aria/ 
[2] AskAlexia Web application at http://www.askalexia.com. 
[3] Bezemer, C.P., Mesbah, Van Deursen: A. (2009). Automated security testing of web 

widget interactions. ESEC/SIGSOFT FSE, 81-90. 
[4] EvalAccess, http://sipt07.si.ehu.es/evalaccess2/ 
[5] Evaluation tools,http://www.w3.org/WAI/RC/tools/complete 
[6] Google Search Web application at http://www.google.com. 
[7] Kluge, J., Kargl, F., Weber, M., (2007). The effects of the AJAX Technology on Web 

application usability. Int. Conf. on Web Information Systems and Technologies. 
[8] Marchetto, A., Ricca, F, Tonella, P., (2008). A case study-based comparison of Web 

testing techniques applied to AJAX Web applications. International Journal on Soft-
ware Tools for Technology Transfer, (10)(6), 477-492. 

[9] Marchetto, A., Tonella, P., and Ricca, F., (2008). State-based testing of Ajax web ap-
plications. In Proc. of 1st Int. Conf. on Software Testing Verification and Validation, 
121–130. 

[10] Mesbah A., Bozdag E., and van Deursen A., (2008). Crawling Ajax by inferring user 
interface state changes. In Proc. of the 8th Int. Conf. on Web Engineering, 122–134.. 

[11] Mesbah A. , and van Deursen A., (2009). Invariant-based automatic testing of Ajax 
user interfaces. In Proc. of the 31st Int. Conf. on Software Engineering, 210–220.  

[12] Roest D., Mesbah A., van Deursen A., (2010). Regression Testing Ajax Applications: 
Coping with Dynamism. In Proc. of the 3rd Int.Conf. on Software Testing, Verifica-
tion and Validation. 

[13] Section 508, http://www.section508.gov/ 
[14] WebDriver library by Selenium, http://code.google.com/p/Web-accessibility-testing/ 
[15] Web Content Accessibility Guidelines 1.0, http://www.w3.org/TR/WCAG10/ 
[16] Web Content Accessibility Guidelines 2.0, http://www.w3.org/TR/WCAG20/ 

Commento [FS1]: Probabilmente pos-
siamo toglierlo x rientrare nelle 8 pagine…. 


